Over 200 studies published in peer-reviewed journals have featured T2MR in a breadth of applications including the direct detection and measurement of targets such as whole blood, plasma, serum, saliva, sputum and urine. 

Learn more about how the proven T2MR technology can enhance patient care and hospital economics at your hospital today.


Snyder, J., Giese, H., Bandoski-Gralinski, C., et. al. T2 Magnetic Resonance-based Direct Detection of Three Lyme Disease-Related Borrelia Species in Whole Blood Samples. Journal of Clinical Microbiology. (2017) DOI:10.1128/JCM.00510-17

Cuker, A.,  Husseinzadeh, H,. Lebedeva, T., et. al. Rapid Evaluation of Platelet Function with T2 Magnetic Resonance. American Journal of Clinical Pathology. (2017) DOI: 10.1093/ajcp/aqw189


Wilson, N.M., Kenney, R.M.,  Tibbetts, R.J., et. al.  T2 Magnetic Resonance Improves the Timely Management of Candidemia. Poster Presentation IDWeek 2016.

Dwivedi, S., Ordaya, E., Kezlarian, B., et. al.  Novel T2 Magnetic Resonance Assay Compared to Standard Blood Cultures for Detection of Candidemia. Poster Presentation IDWeek 2016.

Falguni, P., and Young, E.  Antifungal Prescribing During Initial Implementation of Candidemia Early Detection and Species Identification Testing with T2Candida Panel. Poster Presentation IDWeek 2016.

Vergidis, P., Clancy, C. J., Shields, R. K., Park, S. Y., Wildfeuer, B. N., Simmons, R. L., & Nguyen, M. H. (2016). Intra-Abdominal Candidiasis: The Importance of Early Source Control and Antifungal Treatment. PloS one, 11(4), e0153247.

Beyda, N.D., Amadio, J., Rodriguez, J.R., et. al. Evaluation of BacT/Alert FA Blood Culture Bottles and T2Candida Assay for Detection of Candida in the Presence of Antifungals. Poster Presentation, ASM Microbe 2016.

Arendrup, M. C., Schierbeck, J., Reiter, N., Performance Evaluation of the T2Candida Panel in the ICU Setting – Data from an Ongoing Study. Poster Presentation, ASM Microbe 2016.

Hamula, C. L., Hughes, K., Fisher B.T., et. al. T2Candida Provides Rapid and Accurate Species Identification in Pediatric Cases of Candidemia. American Journal of Clinical Pathology. (2016) DOI: 

Husseinzadeh, H., Cuker, A., Lebedeva, T., Lambert, M. P., et al. T2MR® Platelet Analysis Enables Fast and Accurate Diagnosis of Qualitative Platelet Disorders in Microliter Volumes of Whole Blood. Poster Presentation THSNA 2016.

Luo, Z.X., Fox, L., Cummings, M. et. al. New Frontiers in in vitro Medical Diagnostics by Low Field T2 Magnetic Resonance Relaxometry. Trends in Analytical Chemistry. (2016) doi:10.1016/j.trac.2016.02.025


Kullberg, B. J., & Arendrup, M. C. (2015). Invasive Candidiasis. New England Journal of Medicine, 373(15), 1445-1456.

Neely, L.; Plourde, D.; Suchocki, A., et. al. T2Bacteria: Rapid and Sensitive Detection and Identification of Sepsis Pathogens in Whole Blood Specimens by T2MR®. Poster Presentation, AMP 2015. 

Pappas, P.G, Nguyen, M.H, and Mylonakis, E. (2015) Investigational Study: T2Candida is more Sensitive and Rapid than Blood Culture for Monitoring Candidemia in Patients with Proven Infection. Poster Presentation, ICAAC/ICC 2015.

Pfaller, M.A, Wolk, D.M, and Lowery, T.J. (2015). T2MR and T2Candida: novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future microbiology, doi:10.2217/fmb.15.111.

Cuker, A., Lebedeva, T., Husseinzadeh, H., at. al. Investigational Study: T2MR® Platelet Analysis Correlates With LTA and Reveals Unique Details of ADP-Mediated Platelet Activation in Whole Blood. Poster Presentation, ISTH 2015.

Smith, R., Papkov, V., Andre, P., et al. Investigational Study: Whole Blood Platelet Activity Measurements Multiplexed with Quantitative Fibrinogen, Clot Time and Fibrinolysis Measurements by T2MR®. Poster Presentation, ISTH 2015.

Hughes, K.T., Zaoutis, T., Fisher, B., et. al. (2015). Investigational Study: T2Candida Provides Rapid and Accurate Species Identification in Pediatric Cases of Candidemia. Poster Presentation, asm2015.

Bilir, S. P., Ferrufino, C. P., Pfaller, M. A., and Munakata, J. (2015). The economic impact of rapid Candida species identification by T2Candida among high-risk patientsFuture microbiology, (10) 7,1133-1144.

Mylonakis, E., Clancy, C.J., Ostrosky-Zeichner, et. al. (2015). T2 Magnetic Resonance Assay for the Rapid Diagnosis of Candidemia in Whole Blood: A Clinical TrialClinical infectious diseases, ciu959.

Langer, R., and Weissleder, R. (2015). NanotechnologyJAMA. 313(2), 135-136.


Clancy, C. J., Vergidis, P., Shields, R. K., and Nguyen, M. H. Invesitgational Study: Intra-abdominal candidiasis: Description of an under-appreciated disease and a case report of rapid diagnosis by whole blood T2Candida assay. Poster Presentation, IDWeek 2014.

Skewis, L. R., Lebedeva, T., Papkov, V., et. al. (2014). T2 magnetic resonance: a diagnostic platform for studying integrated hemostasis in whole blood—proof of concept.Clinical chemistry, 60(9), 1174-1182.

Tripodi, A. (2014). A (nother) Test Meant to Fill the Gap between In Vivo and Ex Vivo HemostasisClinical chemistry, 60(9), 1137-1140.

Cines, D. B., Lebedeva, T., Nagaswami, C., et. al. (2014). Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrinBlood,123(10), 1596-1603.

Ariëns, R. A. (2014). A new red cell shape helps the clotBlood, 123(10), 1442-1443.


Beyda, N. D., Alam, M. J., & Garey, K. W. (2013). Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samplesDiagnostic microbiology and infectious disease, 77(4), 324-326.

Chung, H. J., Castro, C. M., Im, H., et. al. (2013). A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nature nanotechnology, 8(5), 369-375.

Liong, M., Hoang, A. N., Chung, et. al. (2013). Magnetic barcode assay for genetic detection of pathogensNature communications, 4, 1752.

Neely, L. A., Audeh, M., Phung, N. A., et. al. (2013). T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole bloodScience translational medicine, 5(182), 182ra54-182ra54.

Skewis, L. R., Demas, V., & Lowery, T. J. (2013). Nuclear magnetic resonance nanotechnology: applications in clinical diagnostics and monitoringEncyclopedia of analytical chemistry.


Alcantara, D., Guo, Y., Yuan, H., et. al.. (2012). Fluorochrome‐Functionalized Magnetic Nanoparticles for High‐Sensitivity Monitoring of the Polymerase Chain Reaction by Magnetic ResonanceAngewandte chemie international edition, 51(28), 6904-6907.

Bamrungsap, S., Chen, T., Shukoor, M. I., Chen, Z., Sefah, K., Chen, Y., & Tan, W. (2012). Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticlesACS nano, 6(5), 3974-3981.


Agasti, S. S., Liong, M., Tassa, C., et. al. (2012). Supramolecular host–guest interaction for labeling and detection of cellular biomarkersAngewandte chemie international edition,51(2), 450-454.

Demas, V., & Lowery, T. J. (2011). Magnetic resonance for in vitro medical diagnostics: superparamagnetic nanoparticle-based magnetic relaxation switchesNew journal of physics, 13(2), 025005.

Haun, J. B., Castro, C. M., Wang, R., et. al. (2011). Micro-NMR for rapid molecular analysis of human tumor samplesScience translational medicine, 3(71), 71ra16-71ra16.

Issadore, D., Min, C., Liong, M., et. al. (2011). Miniature magnetic resonance system for point of care diagnosticsLab on a chip, 11(13), 2282-2287. 

Ling, Y., Pong, T., Vassiliou, C. C., et. al. (2011). Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkersNature biotechnology, 29(3), 273-277.

Sun, N., Yoon, T. J., Lee, H., et. al.. (2011). Palm NMR and 1-chip NMRIEEE journal of solid-state circuits, 46(1), 342-352.


Kulkarni, A. A., Weiss, A. A., & Iyer, S. S. (2010). Detection of carbohydrate binding proteins using magnetic relaxation switchesAnalytical chemistry,82(17), 7430-7435.

Ling, Y., Vassiliou, C. C., & Cima, M. J. (2010). Magnetic relaxation-based platform for multiplexed assaysAnalyst, 135(9), 2360-2364.


Daniel, K. D., Kim, G. Y., Vassiliou, C. C., et. al. (2009). Implantable diagnostic device for cancer monitoringBiosensors and bioelectronics, 24(11), 3252-3257.

Koh, I., Hong, R., Weissleder, R., & Josephson, L. (2009). Nanoparticle− Target Interactions Parallel Antibody− Protein InteractionsAnalytical chemistry, 81(9), 3618-3622.

Lee, H., Yoon, T. J., & Weissleder, R. (2009). Ultrasensitive Detection of Bacteria Using Core–Shell Nanoparticles and an NMR‐Filter SystemAngewandte chemie international edition, 48(31), 5657-5660.

Lee, H., Yoon, T. J., Figueiredo, J. L., et. al. (2009). Rapid detection and profiling of cancer cells in fine-needle aspiratesProceedings of the national academy of sciences, 106(30), 12459-12464.

Lowery, T. (2009). Nanomaterials‐Based Magnetic Relaxation Switch BiosensorsNanotechnologies for the life sciences.


Atanasijevic, T., & Jasanoff, A. (2007). Preparation of iron oxide-based calcium sensors for MRINature protocols, 2(10), 2582-2589.

Koh, I., Hong, R., Weissleder, R., & Josephson, L. (2008). Sensitive NMR sensors detect antibodies to influenzaAngewandte chemie, 120(22), 4187-4189.

Lee, H., Sun, E., Ham, D., & Weissleder, R. (2008). Chip–NMR biosensor for detection and molecular analysis of cellsNature medicine, 14(8), 869-874.


Daniel, K. D., Kim, G. Y., Vassiliou, C. C., et. al. (2007). Multi-reservoir device for detecting a soluble cancer biomarkerLab on a chip, 7(10), 1288-1293.

Kim, G. Y., Josephson, L., Langer, R., & Cima, M. J. (2007). Magnetic relaxation switch detection of human chorionic gonadotrophinBioconjugate chemistry, 18(6), 2024-2028.


Atanasijevic, T., Shusteff, M., Fam, P., & Jasanoff, A. (2006). Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulinProceedings of the national academy of sciences, 103(40), 14707-14712.

Shapiro, M. G., Atanasijevic, T., Faas, H., et. al. (2006). Dynamic imaging with MRI contrast agents: quantitative considerationsMagnetic resonance imaging, 24(4), 449-462.

Sun, E. Y., Weissleder, R., & Josephson, L. (2006). Continuous analyte sensing with magnetic nanoswitchesSmall, 2(10), 1144-1147.


Grimm, J., Perez, J. M., Josephson, L., & Weissleder, R. (2004). Novel nanosensors for rapid analysis of telomerase activityCancer research, 64(2), 639-643.

Tsourkas, A., Hofstetter, O., Hofstetter, H., et. al. (2004). Magnetic relaxation switch immunosensors detect enantiomeric impuritiesAngewandte chemie international edition, 43(18), 2395-2399.


Perez, J. M., Simeone, F. J., Saeki, Y., et. al. (2003). Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological mediaJournal of the american chemical society, 125(34), 10192-10193.

Zhao, M., Josephson, L., Tang, Y., & Weissleder, R. (2003). Magnetic sensors for protease assaysAngewandte chemie international edition, 42(12), 1375-1378.


Perez, J. M., Josephson, L., O'Loughlin, et. al. (2002). Magnetic relaxation switches capable of sensing molecular interactions. Nature biotechnology, 20(8), 816-820.

Perez, J. M., O'Loughin, T., Simeone, F. J., et. al. (2002). DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. Journal of the american chemical society, 124(12), 2856-2857.


Josephson, L., Perez, J. M., & Weissleder, R. (2001). Magnetic nanosensors for the detection of oligonucleotide sequencesAngewandte chemie, 113(17), 3304-3306.