Automated Detection of Candida auris

Direct from Whole Blood and Swab Specimens by T2MR

Brendan Manning1, Jessica L. Snyder1, Benjamin Chang2, Robert P. Shiever1, Tirtha Haja3, Cathy Wong4, Daniel Gama1, Alba Raza-Garín1, Javier Pemán-García1, Thomas J. Lowery1

T2 Biosystems, 1Hospital Universitario y Politécnico La Fe, Valencia, Spain, 2Instituto de Investigación Sanitaria La Fe

Introduction

Candida auris is an emerging pathogen as a cause of invasive disease and as a cause of nosocomial outbreaks. The high mortality of C. auris has led to increasing public and regulatory concern, as well as clinical interest. This pathogen is a major cause of nosocomial infections and is associated with high mortality rates in patients with underlying health conditions. C. auris has been classified as a “serious threat” by the Centers for Disease Control and Prevention (CDC), highlighting the need for rapid and sensitive diagnostic methods to identify this pathogen.

Methods

Cell Preparation for Laboratory Testing

Blood samples are collected into EDTA anticoagulated whole blood or blood spiked with target organisms. C. auris is an example of an emerging pathogen that is associated with infections in patients with underlying health conditions. The high mortality rate of C. auris patients has led to increasing public and regulatory concern, as well as clinical interest. This pathogen is a major cause of nosocomial infections and is associated with high mortality rates in patients with underlying health conditions. C. auris has been classified as a “serious threat” by the Centers for Disease Control and Prevention (CDC), highlighting the need for rapid and sensitive diagnostic methods to identify this pathogen.

Results

Highly Sensitive DNA Detection by T2MR

T2MR technology allows for highly sensitive detection of C. auris DNA in blood samples. The T2MR detection system uses a superparamagnetic particle-based detection method that allows for rapid and sensitive detection of C. auris DNA in whole blood samples.

Testing of Clinical Samples

The T2MR technology allows for rapid and sensitive detection of C. auris DNA in whole blood samples. The high sensitivity of the T2MR technology has been demonstrated in clinical samples, confirming the potential for this technology to revolutionize the diagnosis of C. auris infections.

Conclusions

The rapid and sensitive detection of C. auris DNA using the T2MR technology will significantly impact the diagnosis and management of infections caused by this emerging pathogen. The high sensitivity and specificity of the T2MR technology provide a promising tool for the early detection and treatment of C. auris infections, which can help reduce mortality rates and improve patient outcomes.