The T2Bacteria Panel Covers 74% of Bacterial Pathogens Causing Bloodstream Infections

Background

- The T2Bacteria[®] Panel is an FDA cleared and CE marked culture independent in vitro diagnostic test that identifies common species that cause bacterial sepsis utilizing T2 magnetic resonance technology.
- This FDA cleared panel detects *Enterococcus faecium*, *Staphylococcus aureus*, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli within 3-5 hours.
- The CE-marked panel also has Acinetobacter baumannii as a sixth target.
- Early identification of these six pathogens is key as all are included within the WHO Critical Pathogens list and CDC Antibiotic Resistance Threats. ^{1,2}
- The Sentry surveillance program found that these six organisms accounted for 63.4% of bacterial bloodstream infections from 2013-2016.³
- The purpose of this study is to evaluate the proportion of organisms from bloodstream infections that were on-panel, in studies evaluating T2Bacteria.

Methods

INCLUSION:

Publications, presentations, and abstracts evaluating the T2Bacteria Panel were systematically screened and included if the study reported organisms grown from conventional blood cultures for all included subjects.

EXCLUSION:

Studies were excluded if organism level data were not available for both on and off-panel organisms. Data relating to Candida species and the T2Candida Panel were excluded from analyses.

OUTCOMES:

- Primary outcome: the percentage of identified pathogens, excluding contaminants, that are onpanel for the T2Bacteria Panel.
- Secondary outcomes include description of the distribution of on and off panel organisms and the time to species ID for blood culture and T2Bacteria.

Results

Author	Year	Location	Population	Time to Species ID	Time to Species	Δ (h)
				Blood Culture (h)	ID T2Bacteria (h)	
Bonura C ⁴	2023	Italy	BSI	93.64	4.91	88.73
Giacobbe DR ⁵	2022	Italy	ICU	NR	NR	NR
Lucignano B ⁶	2022	Italy	Pediatrics	65.7	4.4	61.3
Seitz T ⁷	2022	Austria	ICU	41.5	4.3	37.2
Quirino A ⁸	2022	Italy	BSI	NR	4.5	NR
Drevinek P ⁹	2021	Czech Republic	ICU	62	6.1	55.9
Walsh TJ ¹⁰	2019	USA	HemOnc	12.5	3.7	8.8
Voigt C ¹¹	2019	USA	ED	72.2	6.1	66.1
Nguyen MH ¹²	2019	USA	BSI	71.7	3.61	68.09
Robinson C ¹³	2018	USA	ED/ICU	NR	NR	NR
Weisz EE ¹⁴	2018	USA	ED	24.15	3.82	20.33
DeAngelis G ¹⁵	2018	Italy	ED	25.2	5.5	25.2

Brian C. Bohn, PharmD, BCIDP; Jessica L. Snyder, PhD; Oscar E. Guzman, PharmD, BCPS, BCCCP

¹T2 Biosystems, Lexington, MA, USA

T2 Bacteria Panel Species

NOS = not otherwise specified

Figure 4: Off-panel Pathogens Identified

Discussion

- 74% of identified blood culture pathogens, across 12 studies, were on the T2Bacteria Panel.⁴⁻ ¹⁵ Notably, the T2Bacteria Panel pathogens represented a higher proportion of bloodstream isolates than previous surveillance data would suggest.³
- The most commonly identified pathogens were *S. aureus* (n=49), *E. coli* (n=48), and *K. pneumoniae* (n=34).⁴⁻¹⁵
- The pathogens included on the T2Bacteria Panel are all implicated as WHO critical pathogens or antibiotic resistance threats according to the CDC in their resistant phenotypes.
- E. faecalis (n=10) was the most common off-panel pathogen followed by K. oxytoca (n=5), E. cloacae (n=5), and S. pyogenes (n=5).⁴⁻¹⁵
- (n=73).⁴⁻¹⁵
- 88.73 hours.⁴

Conclusion

The T2Bacteria Panel identified the majority bacterial pathogens causing blood stream infections isolated during 12 clinical studies.

REFERENCES:

- CDC; 2019.
- 2. WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
- . Diekema DJ, Hsueh PR, Mendes RE, et al. The microbiology of bloodstream infection: 20-year trends from the sentry antimicrobial surveillance program. Antimicrob Agents Chemother. 2019; 63(7): e00355-19. Bonura C. Nuove frontiere nella diagnosi rapida delle sepsi: identificazione diretta da sangue con il sistema T2Dx. AMCLI.
- 2023 5. Giacobbe DR, Crea F, Morici P, et al. T2Bacteria and T2Resistance Assays in Critically III Patientswith Sepsis or Septic Shock: A Descriptive Experience. Antibiotics (Basel). 2022; 11(12):1823.
- 6. Lucignano B, Cento V, Agosta M, et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J Clin Microbiol. 2022; 60(10):e0029222.
- Seitz T, Holbik J, Hind J, et al. Rapid Detection of Bacterial and Fungal Pathogens Using the T2MR versus Blood Culture in Patients with Severe COVID-19. *Microbiol Spectr.* 2022; 10(3):e00140-22.
- 8. Quirino A, Scaglione V, Marascio N, et al. Role of the T2Dx magnetic resonance assay in patients with suspected bloodstream infection: a single-centre real-world experience. BMC Infect Dis. 2022; 22(1):113.
- 9. Drevinek P, Hurych J, Antuskova M, et al. Direct detection of ESKAPEc pathogens from whole blood using the T2Bacteria Panel allows early antimicrobial stewardship intervention in patients with sepsis. *Microbiologyopen*. 2021; 10(3):e1210.
- 10. Walsh TJ, Helfgott D, Van Besien K, et al. The T2Bacteria Panel is a rapid detector of bacteremia and has potential to guide therapy in patients with hematological malignancies and hematopoietic stem cell transplantation (HSCT): a pilot study of non-culture molecular diagnostics. ECCMID 2019 accepted abstract (Poster 2366).
- 11. Voigt C, Silbert S, Widen RH, et al. The T2Bacteria assay is a sensitive and rapid detector of bacteremia that can be initiated in the emergency department and has potential to favorably influence subsequent therapy. ECCMID 2019 accepted abstract (Poster 2360).
- 12. Nguyen MH, Clancy CJ, Pasculle AW, et al. Performance of the T2Bacteria Panel for Diagnosing Bloodstream Infections. Ann Intern Med. 2019; 170(12):845-852.
- 13. Robinson C, Jackson R, Sauaia A, Cohen M. 2006. Implementation of the T2 Biosystems T2Bacteria RUO Panel in a Level-One Trauma, Safety Net Hospital. Open Forum Infect Dis. 2018; 5(Suppl 1):S584.
- 14. Weisz EE, Newton EC, Estrada SJ, Saunders MB. Early Experience with the T2Bacteria Research Use Only (RUO) Panel at a Community Hospital. MAD-ID 2018. Accepted abstract.
- 15. DeAngelis G, Posteraro B, DeCarolis E, et al. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J Antimicrob Chemother. 2018; 73 Suppl 4:iv20-iv26

- Coagulase-negative Staphylococcus spp. were the most commonly identified contaminants
- T2Bacteria rapidly identified on-panel pathogens and reduced time to species ID by as much as

Antibiotic Resistance Threats in the United States, 2019. Atlanta, GA: U.S. Department of Health and Human Services,